根據久期和凸度計算債券價格
Ⅰ 如何利用久期和凸性 衡量債券的利率風險
久期和凸性是衡量債券利率風險的重要指標。很多人把久期簡單地視為債券的到期期限,其實是對久期的一種片面的理解,而對凸性的概念更是模糊。在債券市場投資行為不斷規范,利率風險逐漸顯現的今天,如何用久期和凸性量化債券的利率風險成為業內日益關心的問題。
久期
久期(也稱持續期)是1938年由
F.R.Macaulay提出的,用來衡量債券的到期時間。它是以未來收益的現值為權數計算的到期時間。其公式為
其中,P=債券現值,Ct=每年支付的利息,y=到期收益率,n=到期期數,M=到期支付的面值。
可見久期是一個時間概念,是到期收益率的減函數,到期收益率越高,久期越小,債券的利率風險越小。久期較准確地表達了債券的到期時間,但無法說明當利率發生變動時,債券價格的變動程度,因此引入了修正久期的概念。
修正久期
修正久期是用來衡量債券價格對利率變化的敏感程度的指標。由於債券的現值
對P求導並加以變形,得到:
我們將
的絕對值稱作修正久期,它表示市場利率的變化引起的債券價格變動的幅度。這樣,不同現值的券種就可以用修正久期這個指標進行比較。
由公式1和公式2我們可以得到:
在某一特定到期收益率下,P為常數,我們記作P0,即得到:
由於P0是理論現值,為常數,因此,債券價格曲線P與P
/P 0有相同的形狀。由公式7,在某一特定到期收益率下,P /P
0的斜率為修正久期,而債券價格曲線P的斜率為P0×(修正久期)。
修正久期度量了收益率與債券價格的近似線性關系,即到期收益率變化時債券價格的穩定性。修正久期越大,斜率的得絕對值越大,P對y的變動越敏感,y上升時引起的債券價格下降幅度越大,y下降時引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券較修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。
但修正久期度量的是一種近似線性關系,這種近似線性關系使由修正久期計算得出的債券價格變動幅度存在誤差。如下圖,對於債券B′,當收益率分別從y上升到y1或下降到y2,由修正久期計算出來的債券價格變動分別存在P1′P1"和P2′P2"的誤差。誤差的大小取決於曲線的凸性。
市場利率變化時,修正久期穩定性如何?比如上圖中,B′和B"的修正久期相同,是否具有同等利率風險呢?顯然不同。當y變大時,B"價格減少的幅度要小,而當y變小時,B"價格變大的幅度要大。顯然,B"的利率風險要小於
B′。因此修正久期用來度量債券的利率風險仍然存在一定誤差,尤其當到期收益率變化較大時。凸性可以更准確地度量該風險。
凸性
利用久期衡量債券的利率風險具有一定的誤差,債券價格隨利率變化的波動性越大,這種誤差越大。凸性可以衡量這種誤差。
凸性是對債券價格曲線彎曲程度的一種度量。凸性越大,債券價格曲線彎曲程度越大,用修正久期度量債券的利率風險所產生的誤差越大。嚴格地定義,凸性是指在某一到期收益率下,到期收益率發生變動而引起的價格變動幅度的變動程度。
根據其定義,凸性值的公式為:
凸性值
=
凸性值是價格變動幅度對收益率的二階導數。假設P0是理論現值,則凸性值=
應用
由於修正久期度量的是債券價格和到期收益率的近似線性關系,由此計算得出的債券價格變動幅度存在誤差,而凸性值對這種誤差進行了調整。
根據泰勒系列式,我們可以得到
的近似值:
這就是利用修正久期和凸性值量化債券利率風險的計算方法。我們可以看到,當y上升時, 為負數,若凸性值越大,則
的絕對值越小;當y下降時,為正數,若凸性值越大,則越大。
因此,凸性值越大,債券利率風險越小,對債券持有者越有利;而修正久期具有雙面性,具有較小修正久期的債券抗利率上升風險較強,而當利率下降時,其價格增幅卻小於具有較大修正久期債券的價格增幅。
以國債21國債(15)和03國債(11)為例,兩券均為7年期固息債,每年付息一次(附表為今年3月1日的有關指標)。
相比之下,21國債(15)具有較小的修正久期和較小的凸性值。如果收益率都上升50個基點,其價格變動幅度分別為:
21國債(15):
03國債(11):
可見經過對久期和凸性的簡單計算,可以比較直觀地衡量債券的利率風險。如果收益率變動幅度不大,則一般修正久期即可以作為度量利率風險的近似指標。
Ⅱ 久期及凸性的解釋,求息票債券的價格及久期
價格:982.27,久期1.87
久期和凸性分析債券的利率風險,即到期收益率隨市場利率發生變化時,債券價格的變化
實際上債券價格和到期收益率形成一個曲線,分析在到期收益率(本例中為10%)附近的曲線,將此曲線近似為直線,就是久期;近似為二次曲線,就是凸性。
Ⅲ 金融久期及凸性計算題
看了這個帖子才知道Duration和Convexity的中文翻譯是「久期」和「凸性」...
1.
Modified Duration
= (1 * PVCF1 + 2 * PVCF2 + ... + n * PVCFn)/(k * Price)(1 + yield/k)
其中:
PVCF是每筆資金流的現值。
k是每年付款的次數。你說是歐洲美元債券,所以我設k=2
Price是債券的價格。因為票息率等於收益率,所以價格等於面值。
yield是收益率。
用這個公式計算出來,Modified Duration是4.96,即D=4.96。具體的資金流情況如下:
資金期數 資金值 資金現值
1 $40.00 $38.46
2 $40.00 $36.98
3 $40.00 $35.56
4 $40.00 $34.19
5 $40.00 $32.88
6 $40.00 $31.61
7 $40.00 $30.40
8 $40.00 $29.23
9 $40.00 $28.10
10 $40.00 $27.02
11 $40.00 $25.98
12 $1,040.00 $649.58
2、
Convexity = [(V+) + (V-) - 2(V0)] / [2 (V0) (delta yield)^2]
其中:
V+是收益率增加後的債券價格,這里是999.53785。
V-是收益率下降後的債券價格,這里是1000.46243。
V0是目前收益率下的債券價格,這里是面值1000。
delta yield是上升和下降的收益率之差,這里是0.0002。
用這個公式計算,Convexity是3.5,即G=3.5。
3.
Percentage Price Change
= -Duration * delta yield * 100 + Convexity * (delta yield)^2 * 100
= -4.96 * 0.02 * 100 + 3.5 * (0.02)^2 * 100
= -9.78%
Ⅳ 如何計算債券久期
理論價格和實際價格不一樣很正常的。因為理論要成立有很多假設,現實市場條件是不滿足的。比如用久期計算利率波動帶來的債券價格波動,那是只有在波動很小的情況下才准確成立,例如1個BP,但你使用時,往往至少用波動25個BP,誤差就很大了。而且影響實際價格的因素除了久期還有別的,例如供求,例如凸性。
Ⅳ 到期收益率和債券價格
選A
利率變動時,用久期和凸度估算債券價格變化,久期是線性的,凸度總是正的,對久期的修正,當利率下降時是助推價格上漲,當利率升高時是緩沖債券下跌,所以選A。
Ⅵ 已知久期凸度利率上升對債券價格的影響,求詳細解答帶公式
該債券頭寸價值變動=100萬元*(-1*8*0.25%+150*0.25%*0.25%)=-19062.5元
也就是說利率上升25基點該債券頭寸價值下跌19062.5元
Ⅶ 已就久期和凸性,求當利率變化時,債券的價值變化
該證券組合價值=40萬元*(1-4.2%+0.5*56*0.01^2)+60萬元*(1-2.8%+0.5*42*0.01^2)=96.3846萬元
也就是說當市場利率上升1%時,該證券組合價值為下跌,價值變為96.3846萬元。 感謝crazy1398。
Ⅷ 利用久期計算的債券價格為什麼和實際價格不一樣
理論價格和實際價格不一樣很正常的。因為理論要成立有很多假設,現實市場條件是不滿足的。比如用久期計算利率波動帶來的債券價格波動,那是只有在波動很小的情況下才准確成立,例如1個BP,但你使用時,往往至少用波動25個BP,誤差就很大了。
而且影響實際價格的因素除了久期還有別的,例如供求,例如凸性。
Ⅸ 有關久期凸性的計算債券價格
第一問,以市場利率為6%為例,計算現在的合理債券價格=5/(1+6%)+5/(1+6%)^2+5/(1+6%)^3+5/(1+6%)^4+5/(1+6%)^5+100/(1+6%)^5=95.79元
其他各種利率,把6%換成不同的折現率,分別計算。
在市場利率為5%、5.5%、5.85%、6%、6.2%的時候,債券價格分別為:
100元、97.86元、96.40元、95.79元、94.97元。
第二問,以市場利率5%為例,市場利率上升5、10、50、100個基點,變化後的市場利率分別為5.05%、5.1%、5.5%和6%,套用以上公式,債券價格分別為:99.78元、99.57元、97.86元、95.79元。
修正久期公式為△P/P≈-D*×△y
我們考察市場利率從5%變化到5.05%這個微小變化,價格變化為-0.22,利率變化為0.05%
P=100,所以修正久期D*=4.4
根據這個修正久期,當市場利率從5%變化到5.1%的時候,債券價格將下降4.4*0.1=0.44元,即,從100元變為99.56元,實際價格變為99.57元,實際的差距是0.01元。
凸性設為C,則對於0.1個百分比的變化率,有
0.01元=1/2 * C * 0.1^2
解得C=2,凸度為2.
以上供參考。